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Abstract 

Background: This study evaluated the effectiveness of improved housing on indoor residual mosquito density and 
exposure to infected Anophelines in Minkoameyos, a rural community in southern forested Cameroon.

Methods: Following the identification of housing factors affecting malaria prevalence in 2013, 218 houses were 
improved by screening the doors and windows, installing plywood ceilings on open eaves and closing holes on walls 
and doors. Monthly entomological surveys were conducted in a sample of 21 improved and 21 non-improved houses 
from November 2014 to October 2015. Mosquitoes sampled from night collections on human volunteers were 
identified morphologically and their parity status determined. Mosquito infectivity was verified through Plasmodium 
falciparum CSP ELISA and the average entomological inoculation rates determined. A Reduction Factor (RF), defined 
as the ratio of the values for mosquitoes collected outdoor to those collected indoor was calculated in improved 
houses (RFI) and non-improved houses (RFN). An Intervention Effect (IE = RFI/RFN) measured the true effect of the 
intervention. Chi square test was used to determine variable significance. The threshold for statistical significance was 
set at P < 0.05.

Results: A total of 1113 mosquitoes were collected comprising Anopheles sp (58.6%), Culex sp (36.4%), Aedes sp 
(2.5%), Mansonia sp (2.4%) and Coquillettidia sp (0.2%). Amongst the Anophelines were Anopheles gambiae sensu 
lato (s.l.) (95.2%), Anopheles funestus (2.9%), Anopheles ziemanni (0.2%), Anopheles brohieri (1.2%) and Anopheles paludis 
(0.5%). Anopheles gambiae sensu stricto (s.s.) was the only An. gambiae sibling species found. The intervention reduced 
the indoor Anopheles density by 1.8-fold (RFI = 3.99; RFN = 2.21; P = 0.001). The indoor density of parous Anopheles was 
reduced by 1.7-fold (RFI = 3.99; RFN = 2.21; P = 0.04) and that of infected Anopheles by 1.8-fold (RFI = 3.26; RFN = 1.78; 
P = 0.04). Indoor peak biting rates were observed between 02 a.m. to 04 a.m. in non-improved houses and from 02 
a.m. to 06 a.m. in improved houses.

Conclusion: Housing improvement contributed to reducing indoor residual anopheline density and malaria trans-
mission. This highlights the need for policy specialists to further evaluate and promote aspects of house design as 

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Malaria Journal

*Correspondence:  rachelnguela@yahoo.com; roseleke@yahoo.com
1 Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), 
Bastos, PO Box 4256, Yaoundé, Cameroon
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-020-03232-6&domain=pdf


Page 2 of 16Nguela et al. Malar J          (2020) 19:172 

Background
Malaria threatened nearly half of the world’s population 
in 2012 [1], with a total of 198 million cases reported in 
2013 [2]. Malaria is endemic in 43 sub-Saharan Africa 
countries, where it constitutes the leading cause for 
outpatient consultations and hospitalization [1]. In 
Cameroon in 2013, malaria accounted for 28.7% of all 
consultations in health facilities, 49.8% of hospitaliza-
tions, 22% of deaths across all age groups, and 45% of 
deaths amongst children less than 5  years [3]. Despite 
increasing efforts expended by the Cameroon govern-
ment to control the disease, the endemicity is seemingly 
stagnant across most parts of the country, and is highly 
heterogeneous across the various geo-ecological and cli-
matic settings. Children less than 5  years old and preg-
nant women are the most affected [4]. The intensity and 
duration of malaria transmission is greatly influenced by 
climate and geography. In many endemic biotopes, the 
situation is further worsened by increased drug resist-
ance in Plasmodium falciparum, the prevailing parasite 
species, inconsistent allocation and inadequate use of 
vector control measures, the occurrence of a vast pleth-
ora of permissive and efficient vectors of P. falciparum [5, 
6], and the occurrence and spread of insecticide resist-
ance in the major vectors [7, 8]. Of the 52 Anopheles spe-
cies described so far in Cameroon, 17 have been reported 
to support the development and propagation of malaria 
parasites, amongst which are six major species (Anoph-
eles gambiae, Anopheles coluzzii, Anopheles arabiensis, 
Anopheles funestus, Anopheles nili and Anopheles mou-
cheti). The rest play only minor, secondary roles in trans-
mission locally.

Although vector control is fundamentally the most 
successful strategy for malaria prevention and control in 
Cameroon (and beyond), its effectiveness over the years 
has relied essentially on the use of long-lasting insecti-
cidal nets (LLIN). Meanwhile the application of indoor 
residual spraying (IRS) is currently being considered in 
the country [9]. Nevertheless, the evolution and spread 
of insecticide resistance, especially to pyrethroids and 
changes in vector behaviour in the presence of these 
interventions are major threats to their efficacy [10–17]. 
The Cameroon Multiple Indicator Demographic Health 
Survey conducted in 2011 revealed low LLIN coverage 
in households and increase non compliance with user 
practices as some of the reasons for the country’s lim-
ited progress in malaria control [4]. This emphasizes the 

need to develop new and alternative or complementary 
strategies for effective malaria vector control in line with 
the recommendations of the World Health Organization 
(WHO) [5].

Housing is increasingly being recognized as an impor-
tant determinant of health outcomes [18]. Several stud-
ies have demonstrated the relationship between housing 
design and global health issues, such as parasitic diseases 
and flooring material, respiratory diseases and indoor 
ventilation, vector-borne diseases and screening of open-
ings. History in Europe portrays the potential for hous-
ing improvements as a legitimate strategy to effectively 
contribute towards malaria elimination [19, 20]. Housing 
improvements through screening of windows and doors, 
closing of eaves and crevices, patching of walls and roofs 
could help reduce malaria transmission [21–26].

In many African countries, the biting and feeding activ-
ity of the main malaria vectors tend to increase at night 
when humans are mainly indoors [21–30]. Houses with 
openings at the level of eaves, walls, windows, doors 
and/or ceilings will enhance mosquito entry, exposing 
its occupants to higher risks of malaria [31–34]. Earlier 
studies in Cameroon revealed higher malaria parasite 
prevalence and density amongst individuals living in 
poorly constructed houses (wooden plank houses) com-
pared to those in cement and brick houses [7].

Typical housing in many areas has openings on the 
eaves, walls, windows and doors. These are impor-
tant determinants that could facilitate mosquito entry, 
thus increasing human vector contact and exposure to 
infective bites. This study, therefore, aimed to deter-
mine the effectiveness of improved housing on indoor 
residual mosquito density and exposure to malaria-car-
rying Anophelines in the rural endemic community of 
Minkoameyos in the Centre region of Cameroon.

Methods
Study area
The study was carried out in Minkoameyos, a locality 
situated in the Nkol-Nkoumou health area of the Nkol-
bisson health district. It is located 25  km to the west 
of Yaoundé, the capital city of Cameroon. This village 
is about 731  m above the sea level at latitude 11, 42° 
North and longitude 3, 87° East. The climate is of the 
Guinean Equatorial type with two dry seasons (July to 
August and November to February) and two rainy sea-
sons (March to June and September to November) [35]. 

a complementary control tool that could reduce indoor human–vector contact and malaria transmission in similar 
epidemiological settings.
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The annual rainfall and temperature averages 1650 mm 
and 24  °C, respectively, with a relative humidity less 
than 80% [36]. It is a rural community harbouring 
approximately 710 households with an average of seven 
people (including two children less than 5 years) old per 
household. The local ethnic groups comprise mainly 
of the indigenous Ewondos, and some members of the 
Bassa, Bamileke, Bamoun and Eton tribes. They depend 
essentially on farming and small scale businesses for 
subsistence. Minkoameyos is in the south Cameroonian 
Equatorial forest strata, where malaria transmission is 
known to occur perennially with An. gambiae sensu 
lato (s.l.) being the major vector species, and P. falcipa-
rum as the predominant parasite species [37].

Study design and housing modifications
This was a longitudinal entomological study that lasted 
12 months, from October 2014 to November 2015. The 
main intervention was housing modification targeting 
windows, doors, eaves, walls and roof to limit mosquito 
access into houses. For the control arm of the inter-
vention, none of the above was done on the assigned 
houses. As described in Fig. 1, the selection of house-
holds for the study was through a systematic random 
sampling. Outcome parameters were the entomological 
indices of malaria transmission. Prospective mosquito 
collection was done in both the intervention and con-
trol houses. Measures of the entomological indices for 
malaria transmission in the two groups were compared 
for effectiveness.

Specifically, in intervention houses, screened doors 
with metallic netting and wooden frame were fabri-
cated and installed on all existing doors leading to 
outside. For houses with windows opening towards 
outside, a second window with metallic netting and 
wooden frame was made and mounted on the exist-
ing window frames. Where the windows were hang-
ing inside the house when opened, or could be opened 
without hanging at all, a piece of metallic netting was 
adapted to the outer parts of the window frame, using 
wooden cover joints. Sheets of compacted wood were 
used to block all opened eaves. All holes on the roofs 
and walls were closed using same type of material used 
during initial construction by the house owners. Fig-
ures 2, 3, 4, 5, 6 and 7 show some of the improvements 
that were done on the house structures.     

For the control arm of the intervention, no housing 
modification was done during the study period. Both 
study arms were found in the same community. They had 
the same source of information regarding malaria pre-
vention and sought the same health facilities for malaria 
case management.

Field collection and processing of adult Anophelines
Every month, during two consecutive nights, mosqui-
toes were sampled from 06:00  p.m. to 06:00 a.m. from 
improved and non-improved houses using the human 
landing catch (HLC) method. Mosquitoes were collected 
indoors and outdoors in three randomly selected houses 
(at least 50  m apart) each night, with rotation between 
houses at different locations in order to cover every sec-
tion of the village. A team of four trained volunteers (two 
during the first half on the night and the others during 
the second half of the night) collected mosquitoes in each 
house. Only adequately trained volunteers were allowed 
to collect mosquitoes. In each selected house, one col-
lector sat inside the house (indoor) and the other on 
the veranda (outdoor) where they collected mosquitoes 
as soon as they landed on their exposed lower limbs. In 
order to avoid bias due to differential attractiveness, the 
two volunteers swapped locations (indoor and outdoor) 
every 2  h during night and during which time an ento-
mologist visited the teams and collected of mosquitoes. 
These mosquitoes were sorted by genus and the anophe-
lines identified morphologically using keys of Gillies and 
De Meillon (1947), and Gillies and Coetzee (1987) [38, 
39]. The ovaries of all unfed females were dissected for 
parity status determination as described by Detinova 
et al. [40]. All dissected and undissected mosquitoes were 
individually stored desiccated in tubes for subsequent 
laboratory analyses.

Laboratory processing of Anophelines
A proportion of the collections belonging to the An. 
gambiae complex was further identified to species level 
using molecular assays. Genomic DNA of each individual 
specimen was extracted using DNAzol protocol [41] and 
PCR amplified to determine species according to Favia 
et al. [42]. The head and thorax portions of each female 
Anopheles collected were separated from the rest of the 
body, homogenized in grinding buffer (0.5% Casein, 0.1 N 
NaOH) and used to check for the presence of P. falcipa-
rum circumsporozoite protein (CSP) by enzyme-linked-
immunosorbent assay (ELISA) [43, 44]. For each species, 
the infection rate was calculated and the entomological 
inoculation rate determined. To minimize false positive 
CSP ELISA, only high absorbance readings were consid-
ered (mean plus three standard deviations of the negative 
controls).

Data analysis
For each house, information on each mosquito col-
lected from field and laboratory procedures during 
each night catch was recorded using a questionnaire. 
The data were entered into Epi  Info™ software by two 



Page 4 of 16Nguela et al. Malar J          (2020) 19:172 

trained data clerks and both databases then sorted and 
cleaned for statistical analysis. Man biting rate (ma) was 
calculated as the average number of bites received from 
Anopheles species per person each night of collection. 
Infection rate (IR) was calculated as the proportion of 
Anopheles species tested positive for P. falciparum CSP 
by ELISA. The entomological inoculation rate (EIR) was 
determined as the product of the infection rate (IR) and 
the man biting rate (ma). A Chi square test was used to 

determine variable significance. The threshold for sta-
tistical significance was set at P < 0.05.

With regards to measures of the intervention effect, 
the following parameters were considered:

a. Reduction Factor (RF) given as the ratio of the values 
for mosquitoes collected outdoor to those collected 
indoor. (RFI = Reduction Factor in improved houses 

Minkoameyos Village (710 households)

Baseline survey: Selec�on of 70 households 
(sampling step 11)

Renova�on of 40 of the households

(Improved houses) 

640 remaining houses 

Selec�on of 21 of these households with 
children aged 2 to 59 months

Selec�on of 40 households :(nonimproved houses: 
17 houses away from the improved)

Selec�on of 21 of these households with children 
aged 2 to 59 months

Outdoor and indoor mosquitoe catches for 12 
months: 1 night/trimester/house

Outdoor and indoor mosquitoe catches for 12 
months: 1 night/trimester/house

Field processing: iden�fica�on of all mosquitoes

Data entry and valida�on

Sta�s�cal Analysis

Laboratory processing: Dissec�on, ELISA Tes�ng, PCR on Anopheline

Fig. 1 Sampling and data collection process for the entomologic study
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and RFN = Reduction Factor in non-improved 
houses);

• Where RFI > 1, intervention had a reduction effect 
between outdoor and indoor on a specific ento-
mologic index;

• RFI < 1, intervention had an exposing effect 
between outdoor and indoor on a specific ento-
mological index;

b. The Intervention Effect (IE) = Measure of the true 
effect of the intervention in the population.

Fig. 2 Improvement on windows
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 IE = RFI/RFN

• Where IE > 1, meant the intervention has pro-
tective effect in the overall population (on the 
entomological index of interest);

• Where IE < 1 meant the intervention is non-pro-
tective in the overall population (on the ento-
mological index of interest).

Results
Mosquito composition and density
As shown in Table  1, a total of 1105 mosquitoes were 
collected comprising 647 (58.6%) Anopheles sp., 402 
(36.4%) Culex sp., 28 (2.5%) Aedes sp. and 2 (0.2%) Coqu-
ellitidia sp. The Anophelines comprised of An. gambiae 
s.l. (95.2%), Anopheles funestus (2.9%), Anopheles brohieri 
(1.2%), Anopheles paludis (0.5%) and Anopheles ziemanni 

Fig. 3 Improvement on doors

Fig. 4 Improvement on door steps
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(0.2%). Of the 647 Anophelines, 154 (23.8%) collected 
indoors comprising An. gambiae s.l. 149 (96.7%), An. 
funestus 4 (2.6%), and An. ziemanni1 (0.6%). 493 (76.2%) 
were collected outdoor, made up of An. gambiae s.l. 467 
(94.7%), An. funestus 15 (3.04%), An. paludis 3 (0.6%) and 
An. brohieri 81.6 (%). An. gambiae sensu stricto (s.s.) was 
the only member of the An. gambiae complex found.

With regards to the proportion of Anophelines collected 
based on housing status (improved/non-improved), 429 

were collected from improved houses, of which 20.04% 
were indoor and 79.96% outdoor. In the non-improved 
houses, 218 Anophelines were collected, amongst which 
31.2% was indoor and 68.8% outdoor.

Nocturnal activity and biting cycle of anophelines
Overall, the average man biting rate was observed to 
increase gradually between 6 p.m. and 4 a.m., peaking 

Fig. 5 Improvement on doors
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between 2 a.m. and 4 a.m. and then slowly declin-
ing to 6 a.m. (Fig.  8). The overall man biting rate for 
the Anopheles was 0.098 bites per person per night 
(b/p/n). Anopheles gambiae was the most aggressive 
species, representing 95.2% of the total number of bites 
(0.094b/p/n) with peak biting hours between 2 a.m. and 
4 a.m. regardless of the place of bite. Despite the small 
number collected compared to An. gambiae, the peak 
biting hours for An. funestus, was also observed at the 
same period both indoor and outdoor (Fig. 8).

Parity rates
A total of 488 female Anopheles was dissected for parity 
status with an overall parity rate of 61.3% (Table 1). Seg-
regating by species, the parity rates were 62.4% (290/465), 
53.8% (7/13), 100% (1/1) and 12.5% (1/8) for An. gambiae, 
An. funestus, An. ziemanni and An. brohieri, respectively.

Infection rates and entomological inoculation rates
A total of 615 female Anopheles mosquitoes were 
processed to ascertain the presence of P. falciparum 

Fig. 6 Improvement on walls
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circumsporozoite protein by CSP-ELISA. Of these, 210 
were infected, giving an overall circumsporozoite pro-
tein rate of 34.2% (Table 1). Despite The circumsporo-
zoite protein rate for An. gambiae (33.6%), the most 
abundant species, was lower compared to An. funestus 
(52.6%). While the lone An. ziemanni and 3 An. paludis 
collected were infected, none of the An. brohieri cap-
tured was infected. The intervention did not reduce 
indoor sporozoite infection rates of all Anopheles 
(IE = 1.1). It however reduced relative indoor sporozo-
ite infection rates of An. gambiae by 1.8-fold. The over-
all average EIR was 0.29 infective bites per person per 

night (ib/p/n) with An. gambiae and An. funestus con-
tributing to most of the transmission (Table 1).

Effect of house improvement on entomological indices
Effect of house improvement on mosquito density
In the improved homes, the relative number of indoor 
Anopheles significantly reduced by 1.8-fold (RFI = 3.99; 
RFN = 2.21; P = 0.001) compared to the unimproved 
houses. In those improved homes, the relative number 
of An. gambiae entering houses increased by 1.7-fold 
(RFI = 3.81; RFN = 2.26; P = 0.004). Although the number 
of An. funestus collected indoors was 12-fold lower than 

Fig. 7 Improvement on roofs
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Table 1 Malaria transmission indices in Minkoameyos

n/a Not applicable, EIR Entomological inoculation rate, CSP circumsporozoite protein, ib/p/n infective bites per person per night

Entomological index Anopheles species

An. brohieri An. funestus An. gambiae An. ziemanni An. paludis Total

Anopheles

Composition

 n 8 19 616 1 3 647

 % 1.2 2.9 95.2 0.2 0.5 100

Man biting rate (b/p/n) 0.001 0.003 0.094 0 0 0.098

Parous/dissected 1/8 7/13 290/465 1/1 0/1 299/488

Parity rate

 % 12.5 53.8 62.4 100 0 61.3

 (95% CI) (0.3–52.7) (25.1–80.8) (57.8–66.8) n/a n/a (56.8–65.6)

Tested for CSP 8 19 584 1 3 615

CSP rate

% 0 52.6 33.7 100 100 34.2

(95% CI) n/a (28.9–75.6) (29.9–37.7) n/a n/a (30.4–38.1)

EIR (ib/p/n)

% 0.01 0.28 0 0 0.29
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Fig. 8 Indoor and outdoor biting cycles of Anopheles species in Minkoameyos

Table 2 Effect of housing improvement on malaria transmission indices in Minkoameyos

n/a Not applicable, RFI Reduction factor in improved houses, RFN Reduction factor in non-improved houses, IE Intervention effect

Mosquito species Improved houses Unimproved houses IE P-value

Number of Anopheles RFI Number of Anopheles RFN

Indoor Outdoor Total Indoor Outdoor Total

An. funestus 1 12 13 12 3 3 6 1 12 0.07

An. gambiae 84 320 404 3.81 65 147 212 2.26 1.7 0.004

Other Anopheles 1 11 12 11 0 0 0 0 n/a n/a

All Anopheles 86 343 429 3.99 68 150 218 2.21 1.8 0.001
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the number collected outdoors in the improved houses, 
this effect did not differ statistically (RFI = 12; RFN = 1; 
P = 0.07) probably due to the small sample size (Table 2).

Effect of house improvement on mosquito parity status
Table  3 summarizes the effect of the intervention on 
the number of parous anophelines by species. Improv-
ing houses generally led to a reduction in the num-
ber of parous anophelines collected indoor by 1.7-fold 
(RFI = 4.48; RFN = 2.67; P = 0.05). The relative number 
of parous An. gambiae significantly reduced by 1.8-fold 
(RFI = 4.32, RFN = 2.63; P = 0.03). The intervention was 
associated with 1.3-fold reduction in indoor parous rates 
for An. gambiae and 1.2-fold overall reduction of indoor 
parous rates (Table 3).

Effect of house improvement on entomological inoculation 
rate
Table 4 depicts the indoor and outdoor variation in ento-
mological inoculation rates (EIR) in the two groups of 
houses. It was observed that improving the houses led to 
a reduction in the number of infective bites received per 
person per night indoors. A relative reduction of 1.7-fold 
(RFI = 4.84, RFN = 2.81) for all Anopheles and 1.6-fold 
(RFI = 4.75; RFN = 3.04) for An. gambiae was recorded.

Effect of house improvement on the night biting cycle 
of the anopheles
As described in Fig. 9, the number of mosquitoes caught 
indoor in improved houses rose from 8 p.m. to 2 a.m. A 
reduction was subsequently observed up till 4 a.m. At 
this point a second increase started. At 6 a.m., when the 
catches were stopped, the highest number of mosquitoes 
collected indoor was found. Indoor and outdoor Anoph-
eles abundance displayed the same hourly variation, with 
a peak at 4:00 a.m. (Fig. 10) in non-improved houses. In 
both group of houses, mosquitoes continued biting at 
6:00 a.m. when the catches were stopped.

Discussion
Entomological indices
Anopheles gambiae s.s. and An. funestus were the main 
Anopheles species collected, followed by An. ziemanni 
and An. paludis, with an appearance of An. brohieri. Dur-
ing this study, most of the Culicine species collected was 
Culex. Its presence might have been due to the proxim-
ity of the study site to the city of Yaoundé, from where 
polluted water frequently drains, especially in run-offs 
to accumulate in this area, creating prolific breeding 
sites for this species. This high density constitutes an 
important source of nuisance by these mosquitoes in the 

Table 3 Effect of housing improvement on parity rate of Anopheles population

n/a Not applicable, RFI Reduction factor in improved houses, RFN Reduction factor in non-improved houses, IE Intervention effect

Mosquito specy Factor Improved houses Unimproved houses IE P-value

Indoor Outdoor Total RFI Indoor Outdoor Total RFN

All Anopheles Parous (n) 31 139 170 4.48 35 94 129 2.67 1.7 0.05

Parity rate (%) 43.1 59.6 55.74 1.39 62.5 74.02 70.49 1.18 1.2 n/a

An. funestus Parous (n) 1 4 5 4 0 2 2 n/a n/a n/a

Parity rate (%) 100 66.6 71.43 0.67 0 66.6 33.33 n/a n/a n/a

An. gambiae Parous (n) 29 134 163 4.62 35 92 127 2.63 1.8 0.03

Parity rate (%) 41.4 61.4 56.6 1.48 66.04 74.2 71.75 1.12 1.3  n/a

Other anopheles Parous (n) 1 1 2 1 0 0 0 n/a n/a n/a

Parity rate (%) 100 11.1 20 0.11 n/a n/a n/a n/a n/a n/a

Table 4 Effect of housing improvement on indoor and outdoor EIR of Anopheles

n/a Not applicable, b/p/n Bites per person per night, EIR Entomological Inoculation rate

Mosquito species Factor Improved houses Unimproved houses IE P-value

Indoor Outdoor Total RFI Indoor Outdoor Total RFN

All Anopheles EIR (ib/p/n) 1.67 8.07 0.048 4.84 1.24 3.49 2.34 2.81 1.7  n/a

An. funestus EIR (%) 0 75 69.23 0 33.33 0 17 n/a n/a n/a

An. gambiae EIR (ib/p/n) 1.64 7.77 0.047 4.75 1.13 3.43 2.24 3.04 1.6 n/a

Other Anopheles EIR (%) 0.007 0.48 0.001 60.5 n/a n/a n/a n/a n/a n/a
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community [45, 46], and an important risk factor for the 
diseases vectored by this species.

Anopheles gambiae as reported previously [46] was the 
most aggressive species found. Peak biting hours were 
consistently observed between 2 a.m. and 4 a.m. regard-
less of the place of bite (indoor or outdoor). This bit-
ing period showed some deviation from the prototype 
described previously by Gillies and De Meillon, which is 
from 10 p.m. to 2 a.m. in most endemic areas of Africa 
[47]. This highlights the ability of Anopheles species to 
frequently change and adapt their biting and feeding hab-
its locally, as well as the need for designing control strate-
gies that would be readily amenable locally. The high man 
biting rates could have also been due to policy gaps in the 

intervention strategies and non-compliance with LLIN 
use. At the time of this study, the LLIN mass distribution 
campaign had happen more than 4 years ago in the com-
munity. The LLIN in households were already older than 
4 years and might have significantly lost their efficacy.

The high parous rate observed especially among the 
major vector species, An. gambiae s.s., is indicative of 
the gradual accumulation of ageing adult population over 
time in this area. This is epidemiologically dangerous, as 
the mosquitoes will be able to survive long enough with 
increased chances of multiple feeding on humans and 
being able to transmit malaria over and again. In addi-
tion, it might be that the anti-vector measures in place 
are in adequate or not efficacious or that the vectors 
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might have simply developed strategies to circumvent the 
intervention and survive beyond the intrinsic incubation 
period of the circulating Plasmodium parasites. Hence, 
measures should be taken to evaluate the effectiveness of 
existing interventions. The population should be properly 
educated on malaria prevention in general and the proper 
use of LLIN, even beyond its intended efficacy life span, 
until replacement. The proportion of circumsporozoite 
protein positive mosquitoes in the sample was 34.2%, 
with an EIR of 0.808ib/P/n. Thus, unprotected individu-
als living in Minkoameyos during the study period were 
at the risk of receiving 0.808 infectious mosquito bites 
per night and consequently 294.92 infectious bites per 
year. The abundance and high infection status of An. 
gambiae and An. funestus confirm their role as the major 
malaria vectors in Cameroon, particularily in peri-urban 
areas [45, 48]. The roles of An. ziemanni and An. paludis 
as secondary malaria vectors, due to their minimal con-
tribution in malaria transmission in localized areas were 
also confirmed. The two vectors can, therefore, contrib-
ute to maintaining transmission even on a small scale 
over a long period of time in this locality. However, due 
to their low density in this study, their actual contribu-
tion to malaria transmission needs to be investigated fur-
ther [49]. None of the An. brohieri was positive for CSP. 
This species, known to be essentially zoophilic and rarely 
biting humans might, therefore, be suggested to have no 
role in malaria transmission in this locality [50].

Effect of house improvement on entomological indices
The effectiveness of screening homes in reducing malaria 
incidence has been demonstrated in several studies in 
sub-Saharan Africa [29, 51]. Limiting vector entrance 
into the houses [52] could reduce the number of mos-
quito bites that could otherwise be infectious and con-
sequently, indoor transmission [26]. Anopheles gambiae, 
one of the most prevalent and important vectors of 
malaria in sub-Saharan Africa, constituted 95.2% of the 
total Anopheles species collected. The findings show that 
appropriate modification of houses can lead to a signifi-
cant decrease in the indoor density of malaria vectors 
and the risk of exposure during the main vector feeding 
hours of the day by up to 50%. Higher reduction rates 
have been reported in several areas such as the Gam-
bia, where improving houses through installation of 
insect-screen ceiling reduced house entry of An. gam-
biae mosquitoes by about 65% and 80% in 1987 and 2003, 
respectively [20, 26]. In southern Mozambique, covering 
gable end of houses with either untreated mosquito net-
ting, shade clothes and deltamethrin-impregnated shade 
clothes reduced house entry of An. gambiae by 84%, 69% 
and 76%, respectively [53]. In a rice irrigation scheme 
area in lowlands of western Kenya, papyrus mats ceiling 

modification reduced house entry of An. gambiae s.l. and 
An. funestus densities by 78 to 80% and 86%, respectively 
compared to unmodified houses [52].

When comparing the night biting cycle of the indoor 
and outdoor mosquitoes, there was a significant reduc-
tion in mosquito abundance during the night, especially 
between 10  p.m. to 06 a.m.. This could be because An. 
gambiae is well adapted for entering houses through the 
eaves, since it flies upwards when encountering a verti-
cal surface [39]. The peak indoor biting rates observed 
at 6:00 a.m. in improved houses and at 4:00 a.m. in 
non improved houses are not consistent with what has 
already reported [38, 46, 55]. The housing improvements 
implemented became significant barriers to mosquito 
entry into the house during their feeding times and dur-
ing human resting time indoors. The difference observed 
in the indoor hourly variation of mosquitoes abundance 
between improved and non improved houses suggest 
that housing improvement may lead to a change in mos-
quitoes behaviour.

The relative number of indoor parous An. gambiae 
reduced significantly by 1.8-fold in improved houses. The 
indoor density of infected Anopheles mosquitoes (all spe-
cies) also reduced by 1.8-fold in improved homes. These 
results highlight the trends and correlation between 
improved housing and the decrease in risk of exposure 
to malaria-carrying vectors. Infection rates and EIR 
were also lower in intervention houses; this may be due 
to factors such as household environment, and popula-
tion knowledge, living and treatment-seeking habits. 
Housing improvements shielding home residents from 
exposure to and contact with potentially infected vectors 
have been shown to be a highly acceptable strategy often 
welcomed by the communities and households receiv-
ing it [54]. The additional comfort, improved aesthetics 
and noticeable relief from vectors could be the reason for 
such level of acceptance. The good uptake of this vector-
control strategy indicates that there is important poten-
tial to scale-up similar interventions elsewhere in places 
of need. This study highlights the need for integrated 
approach to malaria control and further research on the 
effect of house improvement on malaria incidence rates, 
while controlling for other factors mentioned above.

This study presents certain limits. It did not account 
for socio-economic determinants of health, such as 
wealth and the possession of bed nets, which may con-
siderably impact the number of vectors in the catches. 
Furthermore, the study did not control for LLIN posi-
tion. The fact that the investigators were not blinded, 
and knew who slept in an improved house could be a 
source of bias and should be considered in subsequent 
studies. Despite these limits, the study provides useful 
baseline information that can be further exploited for 
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improved malaria vector control in rural endemic set-
tings. Thus, some relevant and important conclusions 
as well as significant trends can be drawn from this 
study.

Conclusion
The screening and repairs made to the houses contrib-
uted to reducing the entry of malaria vectors into houses, 
thereby reducing human vector contact inside houses. 
This study conducted in a semi-urban area of Cameroon, 
with perennial malaria transmission. It therefore high-
lights the need for policy specialists to further evaluate 
and promote aspects of house design as a complementary 
control tool that could limit mosquitoes entering houses, 
thereby reducing human–vector contact and malaria 
transmission in endemic areas of similar settings. How-
ever, the efficacy of such intervention should be closely 
evaluated through larger studies including entomological, 
socio-anthropological and parasitological data collection.
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